Robust equilibrated a posteriori error estimators for the Reissner-Mindlin system
نویسندگان
چکیده
We consider a conforming finite element approximation of the Reissner-Mindlin system. We propose a new robust a posteriori error estimator based on H(div ) conforming finite elements and equilibrated fluxes. It is shown that this estimator gives rise to an upper bound where the constant is one up to higher order terms. Lower bounds can also be established with constants depending on the shape regularity of the mesh. The reliability and efficiency of the proposed estimator are confirmed by some numerical tests.
منابع مشابه
Robust residual a posteriori error estimators for the Reissner-Mindlin eigenvalues system
We consider a conforming finite element approximation of the Reissner-Mindlin eigenvalue system, for which a robust a posteriori error estimator for the eigenvector and the eigenvalue errors is proposed. For that purpose, we first perform a robust a priori error analysis without strong regularity assumption. Upper and lower bounds are then obtained up to higher order terms that are superconverg...
متن کاملDiscontinuous Galerkin with Weakly Over-Penalized Techniques for Reissner-Mindlin Plates
In this article we introduce a new locking-free completely discontinuous formulation for Reissner–Mindlin plates that combines the discontinuous Galerkin methods with weakly over-penalized techniques. We establish a new discrete version of Helmholtz decomposition and some important residual estimates. Combining the residual estimates with enriching operators we derive an optimal a priori error ...
متن کاملA posteriori error analysis for conforming MITC elements for Reissner-Mindlin plates
This paper establishes a unified a posteriori error estimator for a large class of conforming finite element methods for the Reissner-Mindlin plate problem. The analysis is based on some assumption (H) on the consistency of the reduction integration to avoid shear locking. The reliable and efficient a posteriori error estimator is robust in the sense that the reliability and efficiency constant...
متن کاملA Posteriori Error Analysis of Finite Element Methods for Reissner-Mindlin Plates
This paper establishes a very general theory for a posteriori error analysis of finite element methods of the Reissner-Mindlin plate problem in the literature. The theory assures reliability of explicit residual error estimates. The conclusion of this theory is sparsity in the mathematical research of uniform a posteriori error control. Indeed, the a posteriori error estimate for various finite...
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کامل